Learning Fast Quadruped Robot Gaits with the RL PoWER Spline Parameterization
نویسندگان
چکیده
Legged robots are uniquely privileged over their wheeled counterparts in their potential to access rugged terrain. However, designing walking gaits by hand for legged robots is a difficult and time-consuming process, so we seek algorithms for learning such gaits to automatically using real world experimentation. Numerous previous studies have examined a variety of algorithms for learning gaits, using an assortment of different robots. It is often difficult to compare the algorithmic results from one study to the next, because the conditions and robots used vary. With this in mind, we have used an open-source, 3D printed quadruped robot called QuadraTot, so the results may be verified, and hopefully improved upon, by any group so desiring. Because many robots do not have accurate simulators, we test gait-learning algorithms entirely on the physical robot. Previous studies using the QuadraTot have compared parameterized splines, the HyperNEAT generative encoding and genetic algorithm. Among these, the research on the genetic algorithm was conducted by (G l e t t e et al., 2012) in a simulator and tested on a real robot. Here we compare these results to an algorithm called Policy learning by Weighting Exploration with the Returns, or RL PoWER. We report that this algorithm has learned the fastest gait through only physical experiments yet reported in the literature, 16.3% faster than reported for HyperNEAT. In addition, the learned gaits are less taxing on the robot and more repeatable than previous record-breaking gaits.
منابع مشابه
Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملAutonomous Learning of Stable Quadruped Locomotion
A fast gait is an essential component of any successful team in the RoboCup 4-legged league. However, quickly moving quadruped robots, including those with learned gaits, often move in such a way so as to cause unsteady camera motions which degrade the robot’s visual capabilities. This paper presents an implementation of the policy gradient machine learning algorithm that searches for a paramet...
متن کاملEvolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization
Creating gaits for legged robots is an important task to enable robots to access rugged terrain, yet designing such gaits by hand is a challenging and time-consuming process. In this paper we investigate various algorithms for automating the creation of quadruped gaits. Because many robots do not have accurate simulators, we test gait-learning algorithms entirely on a physical robot. We compare...
متن کاملAutonomous Evolution of Gaits with the Sony Quadruped Robot
A trend in robotics is towards legged robots. One of the issues with legged robots is the development of gaits. Typically gaits are developed manually. In this paper we report our results of autonomous evolution of dynamic gaits for the Sony Quadruped Robot. Fitness is determined using the robot's digital camera and infrared sensors. Using this system we evolve faster dynamic gaits than previou...
متن کاملImplementation of a Quadruped Robot Pronking / Bounding Gait Using a Multipart Controller
This paper presents a multipart pronking/ bounding controller for a quadruped robot, as well as the corresponding experimental results. The controller achieves given apex height and forward velocity in a quadruped robot with only one actuator per leg. A quadruped is designed and built and described in some detail. Experimental results obtained using internal sensors and highspeed camera caption...
متن کامل